Particle size analysis company in Chelmsford today? Close examination of any possible defects or voids was undertaken at higher magnification. The voids did not appear to create any structural or conductivity issues. Additionally, the formation and contiguity of intermetallic bonds between the contacts and solder were shown using a combination of EDS line scan elemental spectroscopy and elemental mapping. The SEM image and the EDS map to the left show the intermetallic layer between the copper wire and the tin/lead solder via the mixture of the red copper and the blue tin.
Analysis and Results: The submitted bottle was examined for signs of interior distress, and the water from the bottle was removed and maintained. Some of the suspended particulate was filtered and examined non-destructively by light microscopy first, to characterize the material. A low magnification stereo microscope image of the filtered white particulate is shown in the image above. From this image, biological tissues were ruled out, and the material was observed to be crystalline. Polarized light microscopy (PLM) was used to analyze the sample next. From this examination, the material showed birefringence as shown in the PLM image on the right. The PLM Image Stereo Microscope image suspect material showed optical properties and morphology dissimilar to common carbonates and sulfates. It was determined to be a birefringent crystalline material, but it could not be identified using only PLM methods. Therefore, analysis using scanning electron microscopy with energy dispersive x-ray spectroscopy (SEM-EDS) would have to be performed to obtain further information about the suspect material.
An affected floor tile was submitted to determine if the previous mold testing had missed a source on the tile backing or mastic. Additionally, a new tile from the same manufacturing lot was submitted for comparison. The process of preparing and examining the sample and reference tile was documented. Areas with darkened surface features were imaged and then cut out and examined. While the dark spots looked very discrete when examined by eye, under top light polarized microscopy they appeared more diffuse at the outer edges. The darkest areas surrounded what appeared to be particles embedded in the surface.
MicroVision Laboratories, Inc. has been providing businesses, consultants and other testing laboratories with expert microscopy and analytical services since 2003. Our client base covers a broad spectrum of industries including semi-conductors, aerospace, electronics, biomedical, ceramics, optics, pharmaceuticals, mineralogy, metallurgy, thin films, environmental, membranes filtration and industrial hygiene. See more details at Microvision laboratories ma.
What is your standard turnaround time (TAT) and can it be expedited? Our standard TAT is 5 to 10 business days. We can provide faster TATs on request with the following surcharges: – Same day to 24 hour rush is 100% surcharge – 2 day rush is 75% surcharge – 3 day rush is 50% surcharge – 4 day rush is 25% surcharge Rush requests must have prior approval otherwise we cannot guarantee turnaround times.
SEM is a powerful surface microscopy method which allows for high resolution images to be obtained on a wide range of samples. A focused beam of electrons sweeps across a sample surface and an image is created from the scattered electrons. The electron beam allows for the accurate imaging of features below the resolution limit of visible light. The acquired pictures retain good depth of field, resulting in excellent three-dimensional images. Variations in beam parameters can be made in order to highlight variations in density in the target sample, show extremely fine surface features, and illustrate texture in sample surface coatings. MicroVision Labs has multiple fully-operational SEMs, Bruker X-Flash EDS detectors and mapping technology, backscatter electron (BSE) imaging, and large chamber capabilities. These provide a full suite of microscopy services for all of your analytical needs. Read more details on this website.