Precision metal stamping provider with dgmetalstamping.com: Fortuna’s professional after-sales service team has an excellent reputation and provides comprehensive after-sales service. We promise to respond to customers within 24 hours and quickly resolve customer issues within 48 hours. With the introduction of low-speed wire cutting machines (MITSUBISHI SEI BU), milling machines, grinding machines and other equipment, we have the ability to produce a variety of high-hardness, high-precision, metal-grade progressive dies with stable quality. Our stamping dies are made of alloy steel, high-speed steel, tungsten steel and other super-hard steel to ensure the service life and stability of the stamping process. Read extra information at automotive metal stamping.
Design Features To Optimize For CNC Machining – Incorporating specific design features can significantly improve the efficiency and quality of CNC machined parts. Paying attention to these details can enhance the machining process and result in superior products. Hole and Slot Design – Holes and slots are common features in CNC machined parts. Optimal hole sizes and depths vary depending on the material and intended function. Generally, avoiding extremely deep or very small holes can prevent issues during machining. When designing slots, consider the width, depth, and spacing. Properly designed slots can enhance the part’s functionality and make machining more straightforward. Avoiding overly narrow or deep slots can reduce the risk of tool breakage and ensure smooth machining.
These equipments adopt computer digital control technology, which can adapt to various metal stamping processing processes, are easy to operate, and have the characteristics of high speed and high accuracy. Mainly used for processing various metal materials on metal stamping production lines. The automatic setting device can ensure that the mold operation is always stable and high-speed, and assists in some tasks on the processing line that require high-speed switching; The stroke is adjustable, the maximum stamping speed of our equipment is 1200/min, and it can be adjusted independently according to the production cycle required by the product.
We usually use high-speed steel, cold work die steel, hot work die steel, carbon tool steel, etc., which have the characteristics of high hardness, high heat resistance, high strength, high tensile strength and toughness, and are widely used in various types of mold parts Processing, including forging dies, high-speed cutting, milling, etc. At present, our company has 7 Mitsubishi slow wire cutting machines with a processing accuracy of 0.002mm. They are mainly used to process various precision, small and complex terminals, shrapnel, and bracket molds, focusing on controlling the precision of the products.
Choose Appropriate Tolerances: While tight tolerances may be necessary for certain features, applying them universally can increase costs. Apply tighter tolerances only where they are crucial to the part’s function. For non-critical areas, looser tolerances can suffice. Reducing Waste and Improving Efficiency – Minimizing material waste and optimizing machining efficiency are key to cost-effective CNC machining. Nesting and Optimal Stock Sizes: Efficiently nesting parts on the raw material can reduce waste. By strategically arranging parts on the material sheet or bar, you can maximize the use of the material and reduce scrap. Additionally, selecting stock sizes that closely match the final dimensions of your part can minimize excess material removal. Read additional info at dgmetalstamping.com.
Progressive die: In one stroke, different processes are completed at different positions of a set of molds, that is, a set of molds is used to complete the stamping process of products. Each stroke of the mold can stamp out one or more products. It is suitable for mass production, product processing with relatively complex shapes and requiring multiple processes to complete. Features: High degree of automation, enabling unmanned production. The mold has a long life, can reduce assembly errors and improve the dimensional accuracy of the parts. Advantages: high production efficiency and fast processing speed. The product quality is good because the movement trajectory and speed of the material are relatively stable, ensuring the accuracy and consistency of the product. Save materials and reduce material waste and loss.
Tolerances and Precision – Tolerances define the allowable deviation from the design dimensions. In CNC machining, tight tolerances ensure high precision and part functionality. However, achieving extremely tight tolerances can increase machining time and cost. It’s essential to balance the need for precision with practical machining capabilities. Understanding the limits of your CNC machine and tooling will help you set realistic tolerances. Collaborate with your machinist to determine achievable tolerances that meet the part’s functional requirements without overburdening the manufacturing process.